# R. K. Mohanty

Ranjan Kumar Mohanty

### Author information

*affiliation:*Department of Mathematics, Faculty of Mathematical Sciences, University of Delhi, Delhi, India

## 2010 – today

- 2014
- [j50]R. K. Mohanty, Suruchi Singh, Swarn Singh: A new high order space derivative discretization for 3D quasi-linear hyperbolic partial differential equations. Applied Mathematics and Computation 232: 529-541 (2014)
- [j49]R. K. Mohanty, Venu Gopal: High accuracy non-polynomial spline in compression method for one-space dimensional quasi-linear hyperbolic equations with significant first order space derivative term. Applied Mathematics and Computation 238: 250-265 (2014)
- 2012
- [j48]R. K. Mohanty, Jyoti Talwar: A combined approach using coupled reduced alternating group explicit (CRAGE) algorithm and sixth order off-step discretization for the solution of two point nonlinear boundary value problems. Applied Mathematics and Computation 219(1): 248-259 (2012)
- [j47]R. K. Mohanty, Nikita Setia: A new high accuracy two-level implicit off-step discretization for the system of two space dimensional quasi-linear parabolic partial differential equations. Applied Mathematics and Computation 219(5): 2680-2697 (2012)
- 2011
- [j46]Ranjan Kumar Mohanty, Vijay Dahiya: An O(k
^{2}+kh^{2}+h^{2}) Accurate Two-level Implicit Cubic Spline Method for One Space Dimensional Quasi-linear Parabolic Equations. American J. Computational Mathematics 1(1): 11-17 (2011) - [j45]Christian Grossmann, Ranjan Kumar Mohanty, Hans-Goerg Roos: A direct higher order discretization in singular perturbations via domain split - A computational approach. Applied Mathematics and Computation 217(22): 9302-9312 (2011)
- [j44]Navnit Jha, R. K. Mohanty: TAGE iterative algorithm and nonpolynomial spline basis for the solution of nonlinear singular second order ordinary differential equations. Applied Mathematics and Computation 218(7): 3289-3296 (2011)
- [j43]R. K. Mohanty, Venu Gopal: High accuracy cubic spline finite difference approximation for the solution of one-space dimensional non-linear wave equations. Applied Mathematics and Computation 218(8): 4234-4244 (2011)
- 2010
- [j42]Ranjan Kumar Mohanty: On the use of AGE algorithm with a high accuracy Numerov type variable mesh discretization for 1D non-linear parabolic equations. Numerical Algorithms 54(3): 379-393 (2010)

## 2000 – 2009

- 2009
- [j41]R. K. Mohanty: A variable mesh C-SPLAGE method of accuracy O(k
^{2}h_{l}^{-1}+ kh_{l}+ h_{l}^{3}) for 1D nonlinear parabolic equations. Applied Mathematics and Computation 213(1): 79-91 (2009) - [j40]R. K. Mohanty, Deepika Dhall: Third order accurate variable mesh discretization and application of TAGE iterative method for the non-linear two-point boundary value problems with homogeneous functions in integral form. Applied Mathematics and Computation 215(6): 2024-2034 (2009)
- [j39]Dinesh Khattar, Swarn Singh, R. K. Mohanty: A new coupled approach high accuracy numerical method for the solution of 3D non-linear biharmonic equations. Applied Mathematics and Computation 215(8): 3036-3044 (2009)
- [j38]R. K. Mohanty, M. K. Jain: High-accuracy cubic spline alternating group explicit methods for 1D quasi-linear parabolic equations. Int. J. Comput. Math. 86(9): 1556-1571 (2009)
- [j37]Navnit Jha, R. K. Mohanty, Bimal Kumar Mishra: Alternating group explicit iterative method for nonlinear singular Fredholm Integro-differential boundary value problems. Int. J. Comput. Math. 86(9): 1645-1656 (2009)
- [j36]R. K. Mohanty: New unconditionally stable difference schemes for the solution of multi-dimensional telegraphic equations. Int. J. Comput. Math. 86(12): 2061-2071 (2009)
- 2007
- [j35]R. K. Mohanty: An implicit high accuracy variable mesh scheme for 1-D non-linear singular parabolic partial differential equations. Applied Mathematics and Computation 186(1): 219-229 (2007)
- [j34]R. K. Mohanty: The smart-BLAGE algorithm for singularly perturbed 2D elliptic partial differential equations. Applied Mathematics and Computation 190(1): 321-331 (2007)
- [j33]R. K. Mohanty: Stability interval for explicit difference schemes for multi-dimensional second-order hyperbolic equations with significant first-order space derivative terms. Applied Mathematics and Computation 190(2): 1683-1690 (2007)
- [j32]R. K. Mohanty: Three-step BLAGE iterative method for two-dimensional elliptic boundary value problems with singularity. Int. J. Comput. Math. 84(11): 1603-1611 (2007)
- [j31]P. K. Pandey, R. K. Mohanty: An order h
^{4}numerical technique for solving biharmonic equation. Neural Parallel & Scientific Comp. 15(1): 59-74 (2007) - 2006
- [j30]R. K. Mohanty, Noopur Khosla: Application of TAGE iterative algorithms to an efficient third order arithmetic average variable mesh discretization for two-point non-linear boundary value problems. Applied Mathematics and Computation 172(1): 148-162 (2006)
- [j29]R. K. Mohanty, Urvashi Arora: A family of non-uniform mesh tension spline methods for singularly perturbed two-point singular boundary value problems with significant first derivatives. Applied Mathematics and Computation 172(1): 531-544 (2006)
- [j28]R. K. Mohanty, Swarn Singh: A new fourth order discretization for singularly perturbed two dimensional non-linear elliptic boundary value problems. Applied Mathematics and Computation 175(2): 1400-1414 (2006)
- [j27]R. K. Mohanty, Urvashi Arora: A TAGE iterative method for the solution of non-linear singular two point boundary value problems using a sixth order discretization. Applied Mathematics and Computation 180(2): 538-548 (2006)
- [j26]Urvashi Arora, Samir Karaa, R. K. Mohanty: A new stable variable mesh method for 1-D non-linear parabolic partial differential equations. Applied Mathematics and Computation 181(2): 1423-1430 (2006)
- [j25]R. K. Mohanty: A class of non-uniform mesh three point arithmetic average discretization for y"=f(x, y, y') and the estimates of y'. Applied Mathematics and Computation 183(1): 477-485 (2006)
- [j24]Ranjan Kumar Mohanty, David J. Evans, Navnit Jha: A sixth order accurate AGE iterative method for non-linear singular two point boundary value problems. J. Comput. Meth. in Science and Engineering 6(1-4): 57-69 (2006)
- 2005
- [j23]R. K. Mohanty: An operator splitting technique for an unconditionally stable difference method for a linear three space dimensional hyperbolic equation with variable coefficients. Applied Mathematics and Computation 162(2): 549-557 (2005)
- [j22]R. K. Mohanty: An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients. Applied Mathematics and Computation 165(1): 229-236 (2005)
- [j21]R. K. Mohanty, Navnit Jha: A class of variable mesh spline in compression methods for singularly perturbed two point singular boundary value problems. Applied Mathematics and Computation 168(1): 704-716 (2005)
- [j20]R. K. Mohanty, David J. Evans, Urvashi Arora: Convergent spline in tension methods for singularly perturbed two-point singular boundary value problems. Int. J. Comput. Math. 82(1): 55-66 (2005)
- [j19]R. K. Mohanty, David J. Evans: Alternating group explicit parallel algorithms for the solution of one-space dimensional non-linear singular parabolic equations using an O(k
^{2}+ h^{4}) difference method. Int. J. Comput. Math. 82(2): 203-218 (2005) - [j18]David J. Evans, R. K. Mohanty: On the application of the SMAGE parallel algorithms on a non-uniform mesh for the solution of non-linear two-point boundary value problems with singularity. Int. J. Comput. Math. 82(3): 341-353 (2005)
- [j17]R. K. Mohanty, David J. Evans: Highly accurate two parameter CAGE parallel algorithms for non-linear singular two point boundary value problems. Int. J. Comput. Math. 82(4): 433-444 (2005)
- [j16]R. K. Mohanty, David J. Evans, Noopur Khosla: An non-uniform mesh cubic spline TAGE method for non-linear singular two-point boundary value problems. Int. J. Comput. Math. 82(9): 1125-1139 (2005)
- [j15]R. K. Mohanty, Noopur Khosla: A third-order-accurate variable-mesh TAGE iterative method for the numerical solution of two-point non-linear singular boundary value problems. Int. J. Comput. Math. 82(10): 1261-1273 (2005)
- [j14]R. K. Mohanty, Swarn Singh: Non-uniform Mesh Arithmetic Average Discretization for Parabolic Initial Boundary Value Problems. Neural Parallel & Scientific Comp. 13: 401-416 (2005)
- 2004
- [j13]R. K. Mohanty: An operator splitting method for an unconditionally stable difference scheme for a linear hyperbolic equation with variable coefficients in two space dimensions. Applied Mathematics and Computation 152(3): 799-806 (2004)
- [j12]R. K. Mohanty, P. L. Sachdev, Navnit Jha: An O(h
^{4}) accurate cubic spline TAGE method for nonlinear singular two point boundary value problems. Applied Mathematics and Computation 158(3): 853-868 (2004) - [j11]R. K. Mohanty: An unconditionally stable difference scheme for the one-space-dimensional linear hyperbolic equation. Appl. Math. Lett. 17(1): 101-105 (2004)
- [j10]R. K. Mohanty, Navnit Jha, David J. Evans: Spline in compression method for the numerical solution of singularly perturbed two-point singular boundary-value problems. Int. J. Comput. Math. 81(5): 615-627 (2004)
- [j9]R. K. Mohanty, David J. Evans: Fourth-order accurate BLAGE iterative method for the solution of two-dimensional elliptic equations in polar co-ordinates. Int. J. Comput. Math. 81(12): 1537-1548 (2004)
- 2003
- [j8]R. K. Mohanty, David J. Evans, Dinesh Kumar: High Accuracy Difference Formulae for a Fourth Order Quasi-Linear Parabolic Initial Boundary Value Problem of First Kind. Int. J. Comput. Math. 80(3): 381-398 (2003)
- [j7]R. K. Mohanty, David J. Evans: A Fourth Order Accurate Cubic Spline Alternating Group Explicit Method for Non-Linear Singular Two Point Boundary Value Problems. Int. J. Comput. Math. 80(4): 479-492 (2003)
- [j6]R. K. Mohanty, David J. Evans: The numerical solution of fourth order mildly quasi-linear parabolic initial boundary value problem of second kind. Int. J. Comput. Math. 80(9): 1147-1159 (2003)
- [j5]R. K. Mohanty, P. L. Sachdev, Navnit Jha: Tage Method for Nonlinear Singular Two Point Boundary Value Problem using a Fourth Order Difference Scheme. Neural Parallel & Scientific Comp. 11(3): 281-296 (2003)
- 2002
- [j4]R. K. Mohanty, M. K. Jain, Urvashi Arora: An Unconditionally Stable ADI Method for the Linear Hyperbolic Equation in Three Space Dimensions. Int. J. Comput. Math. 79(1): 133-142 (2002)
- [j3]David J. Evans, R. K. Mohanty: Alternating Group Explicit Method for the Numerical Solution of Non-Linear Singular Two-Point Boundary Value Problems Using a Fourth Order Finite Difference Method. Int. J. Comput. Math. 79(10): 1121-1133 (2002)
- 2001
- [j2]R. K. Mohanty, David J. Evans, Shivani Dey: Three point discretization of order four and six for (
*du**: dx*) of the solution of non-linear singular two point boundary value problem. Int. J. Comput. Math. 78(1): 123-139 (2001)

## 1990 – 1999

- 1999
- [j1]R. K. Mohanty, David J. Evans: Block Iterative Methods for One Dimensional Nonlinear Biharmonic Problems on a Parallel Computer. Parallel Algorithms Appl. 13(3): 239-263 (1999)

## Coauthor Index

data released under the ODC-BY 1.0 license. See also our legal information page

last updated on 2014-06-29 00:15 CEST by the dblp team